Pre-class Warm-up!!!
Let $f(x, y)=3 x \wedge 2-6 x y+2 y^{\wedge} 3$. Three questions:

1. What is the Taylor polynomial of degree 2 for f at the point $(x, y)=(0,0)$?
a. $3 x^{\wedge} 2-6 x y+2 y^{\wedge} 3$.

Approach 1: Calculate all
b. $3 x \wedge 2-6 x y \quad \frac{\partial^{2} f}{\partial x \partial y}$ etc, use formula.
c. $3 x^{\wedge} 2-6 x y+2 y \wedge 2$ Approach 2 i b. is the test degree 2 approximation to f_{i} In the boole "Taylor polynomial of degree 2" is the same as the "Taylor approximation of order $2^{\prime \prime}$
2. What is the Hessian matrix for f at the point

$$
(x, y)=(0,0) ?
$$

$\left.3=\left.\frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x^{2}}\right|_{(0,0)}-6=\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{(0,0)} \quad 0=\left.\frac{1}{2!} \frac{\partial^{2}}{\partial x \partial y}\right|_{10,0} \right\rvert\,$
a.
b.

$$
\left[\begin{array}{cc}
3 & -6 \\
-6 & 2
\end{array}\right] \quad\left[\begin{array}{cc}
6 & -6 \\
-6 & 12
\end{array}\right]\left[\begin{array}{cc}
3 & -6 \\
-6 & 0
\end{array}\right]
$$

d.

$$
\left[\begin{array}{cc}
6 & -6 \\
-6 & 0
\end{array}\right] \quad\left[\begin{array}{cc}
6 & -6 \\
-6 & 4
\end{array}\right]
$$

- \quad Fact: the Taylor polynomial of degree 2 for f at the point $(x, y)=(1,1)$ is

$$
-1+3(x-1) \wedge 2-6(x-1)(y-1)+6(y-1) \wedge 2
$$

What is the Hessian matrix for f at $(x, y)=$ (1,1)? Solution: main b.

Recall the Hessian matrix: For $f(x, y)$

$$
H=\left[\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right] \quad \begin{aligned}
& \text { evaluated } \\
& \text { at } \\
& \left(x_{0}, y_{0}\right)
\end{aligned}
$$

Section 3.3: Extrema of real valued functions First half: local extrema

We learn

- what do we mean by a local maximum or a local minimum?
- The term: critical point
- How do we find local extrema?
- Just like the 1 -variable case, there is a 2 nd derivative test, and there are more possibilities than just having a local maximum or minimum: saddle points.

1 - ranable

Definitions:
Let $f: R \wedge n \rightarrow R$, let a be a vector in $R \wedge n$.
f has a local minimum at a if there is a "neighborhood" around a so that $f(a)$ is the smallest value of f on this neighborhood.
f has a local maximum at a if
Same largest
local
f has an extremum at a means f has a local maximum or minimum at a.

How do we find local extrema?
Definition: a is a critical point means
$\left.\frac{\partial f}{\partial x_{i}}\right|_{a}=0$ for all vanables x_{i}
Local extremum => critical point.

Example. Let $f(x, y)=3 x^{\wedge} 2-6 x y+2 y^{\wedge} 3$. Find all the critical points of f (and whether they are local maxima, minima, or saddle points).
Solution. We solve $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$
Notation: $f_{x}=\frac{\partial f}{\partial x} \quad f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}$
$\frac{\partial f}{\partial x}=6 x-6 y=0 \quad \frac{\partial f}{\partial y}=-6 x+$
Eqn 1: $y=x \quad$ Eqn2: $\quad x=y^{2}$
so $y=y^{2}=y^{2}-y=y(y-1)=0, y=0$ orr
$(x, y)=(0,0)$ or $(1,1)$
These are the two critical points.

Find the Taylor polynomial of degree 2 of $f(x, y)=3 x \wedge 2-6 x y+2 y \wedge 3$ about $(x, y)=$ $(0,0)$.
Solution: $\frac{\partial^{2} f}{\partial x^{2}}=6 \quad \frac{\partial^{2} f}{\partial y \partial x}=-6 \quad \frac{\partial^{2} f}{\partial y^{2}}=12 y$ at $(0,0)$ these are $6,-6,0$
Taylor polynomial of de $g 2$

$$
\begin{aligned}
= & f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2} f_{x x}(0,0) x^{2} \\
& +f_{x y}(0,0) x y+\frac{1}{2} f_{y y}(\Delta 0) y^{2} \\
= & 3 x^{2}-6 x y
\end{aligned}
$$

The Hessian matrix is $\left[\begin{array}{cc}6 & -6 \\ -b & 0\end{array}\right]$
Notice that $3 x^{\wedge} 2-6 x y=3\left[(x-y)^{\wedge} 2-y^{\wedge} 2\right]$ is a saddle point. On $y=0$ we are positive On $x=y$ we are negative.

Find the Taylor polynomial of degree 2 of $f(x, y)=3 x \wedge 2-6 x y+2 y \wedge 3$ about $(x, y)=(1,1)$.

$=3\left[(u-v)^{\wedge} 2+v^{\wedge} 2\right]$, which has a minimum when $(u, v)=(0,0)$.

The second derivative test for local extrema.
If a is a critical point of f then it is either a local minimum, a local maximum, or a saddle point.

Sufficient criterion for a local minimum:

$$
f_{x x}(a)>0 \text { and } \operatorname{det} H>0
$$

Sufficient criterion for a local maximum:

$$
f_{x x}(a)<0 \text { and deft } H>0
$$

Sufficient criterion for a saddle point:

$$
\operatorname{det} H<0 \quad \text { and } f_{x x} \neq 0 \text {. }
$$

In other cases, the test is inconclusive, we can't tell. This happens when

Let's try this out with our Hessian matrices:

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
6^{f} & -6 \\
-6 & 0
\end{array}\right] \\
& \text { aet } H=-36<0 \text { saddle point } \\
& H=\left(\begin{array}{cc}
6 & -6 \\
-6 & 12
\end{array}\right]
\end{aligned}
$$

$$
\text { Let } H=72-36=36>0
$$ minimum.

Pre-class Warm-up!!!
Do you remember the criterion on the Hessian matrix for a local minimum / local maximum / saddle point?

If the Hessian matrix is
$H=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right] \quad$ saddle point do we get a

$$
f_{x x}=3>0
$$

$$
\operatorname{det} H=-1<0
$$

a. Local minimum
b. Local maximum
c. Saddle point
d. Can't tell

What about the matrices:

$$
\begin{array}{ll}
H=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right] & H=\left[\begin{array}{cc}
-3 & 2 \\
2 & -6
\end{array}\right] \\
H=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] & H=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right] \\
\text { e.g. } 3 x^{2}+2 y^{2} & \text { saddle point } 3 x^{2}-2 y^{2} \\
H=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] \\
\text { maximum, }-3 x^{2}-2 y^{2}
\end{array}
$$

Example $f(x, y)=2(x+2 y)^{2}-(x-y)^{2}$ This hal $f_{x x}>0 f_{y y}>0$ but is a saddle point.

We did a test for local extrema when there are two variables, and there is a more general test for more variables.

Global maxima and minima
We learn

- on a closed bounded region of $\mathrm{R}^{\wedge} \mathrm{n}$ a continuous function always has a point where it takes a maximum value and a point where it takes a minimum value. (There may be more than one such point.)
- What do bounded and closed mean? What is the boundary? What is the interior?
- How to find global extrema.

Definitions of boundary, closed, open There are different, equivalent definitions v is a boundary point of a region
D in \mathbb{R}^{n} if every arbitrarily small bull is \mathbb{R}^{n}, center v, contams to th a point of D and a point not in D
D is "dosed" ff it contains all is boundary points.

not closed \rightarrow

$$
x^{2}+y^{2}<1
$$

To find global extrema:

1. Check for local extrema

2 . Find the max and min values of f on the boundary of D
3. Compare the values we get at local extrema with those on the boundary

Our approach for 2 : parametrize the boundply, then put derivatives $=0$

$$
\begin{aligned}
& \frac{d}{d t}(2-\cos t-\sin t)=\sin t-\cos t=0 \\
& \sin t=\cos t ? \quad t=\frac{\pi}{4}, \frac{5 \pi}{4}
\end{aligned}
$$

The value l of f at $\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ are $\quad \begin{array}{ccc}\frac{1}{2}, & 2-\sqrt{2} & 2+\sqrt{2} \\ \text { smallest }\end{array}$

Example: Find the maximum and minimum values of

$$
f(x, y)=x \wedge 2+y^{\wedge} 2-x-y+1
$$

on the unit disk $x^{\wedge} 2+y^{\wedge} 2 \leq 1$.
Solution Steps 1 . Check local extrema When $x^{2}+y^{2}<1$
Step2find extrema on $x^{2}+y^{2}=1$
Step 3 compare
Step 1. $\frac{\partial f}{\partial x}=2 x-1=0 \quad x=\frac{1}{2}$
$\frac{\partial f}{\partial y}=2 y-1, y=\frac{1}{2}$. Critical point $\left(\frac{1}{2}, \frac{1}{2}\right)$.
$H=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. minimum.
Step 2. Parame(vize the boundary $c(t)=(\cos (t), \sin (t)$ f takes the same values at $f(c(t))$ on the boundary,
find the max/min of $f(\cos t, \sin t)$ $=1-\cos t-\sin t+\mid=2-\cos t-\sin t$.

